

OCR (A) Chemistry A-level Topic 4.1.2 - Alkanes

Flashcards

This work by PMT Education is licensed under CC BY-NC-ND 4.0

What is an alkane?

What is an alkane?

A saturated hydrocarbons containing C-H bonds only

What is the general formula of an alkane?

What is the general formula of an alkane?

$C_n H_{2n+2}$

Are alkane bonds polar? Why/why not?

Are alkane bonds polar? Why/why not?

Nonpolar because carbon and hydrogen have similar electronegativities

What is the shape and angle of an alkane?

What is the shape and angle of an alkane?

Tetrahedral

109.5°

Describe the σ (sigma) bond in alkane

Describe the σ bond in alkane

The sigma bond is a covalent bond which has a direct overlap of the electron clouds of the bonding atoms.

What type of intermolecular forces do alkanes have? Why?

What type of intermolecular forces do alkanes have? Why?

London force \rightarrow induced dipole-dipole interaction, because the bonds are nonpolar

What happens to the boiling point as alkane chain length increases? Why?

What happens to the boiling point as alkane chain length increases? Why?

The boiling point increases because there is more surface area and so more number of induced dipole- dipole interaction. Therefore more energy required to overcome the attraction

Does a branched molecule have lower or higher boiling point compared to equivalent straight chain? Why?

Does a branched molecule have lower or higher boiling point compared to equivalent straight chain? Why?

The branched molecule has a lower boiling point because they have fewer surface area and hence less induced dipole -dipole interactions.

Are alkanes soluble in water? why?

Are alkanes soluble in water? Explain your answer.

Insoluble because hydrogen bonds in water are stronger than alkanes' London forces of attraction

How reactive are alkanes?

How reactive are alkanes?

Very unreactive

What reactions will alkanes undergo?

What reactions will alkanes undergo?

Combustion and reaction with halogens

What type of reaction is combustion?

What type of reaction is combustion?

Oxidation reaction

What is complete combustion?

What is complete combustion?

Combustion that occurs with plentiful supply of air

What are the products of complete combustion when alkanes are used?

What are the products of complete combustion when alkanes are used?

Carbon dioxide and water

What is the colour of the bunsen burner flame during complete combustion?

D PMTEducation

What is the colour of the bunsen burner flame during complete combustion?

Blue flame

What is incomplete combustion and what products are formed in the case of alkanes?

What is incomplete combustion and what products are formed in the case of alkanes?

Combustion in a limited supply of oxygen Products : water, carbon dioxide and carbon monoxide

Write an equation for the complete combustion of propane

D G G S PMTEducation

Write an equation for the combustion of propane

$\mathrm{C_3H_8} + 5\mathrm{O_2} \rightarrow 3\mathrm{CO_2} + 4\mathrm{H_2O}$

What type of hydrocarbon are most likely to undergo incomplete combustion?

Which type of hydrocarbon are most likely to undergo incomplete combustion?

Longer chains

What is the environmental impact of carbon monoxide?

What is the environmental impact of carbon monoxide?

It is toxic/poisonous

What is the environmental impact of soot (carbon)?

What is the environmental impact of soot (carbon)?

Asthma, cancer, global dimming

How are halogenoalkanes formed from alkanes?

How are halogenoalkanes formed from alkanes?

Radical substitution

In the presence of what does alkane react with halogens?

In the presence of what does alkane react with halogens?

UV light

What are the three stages of free radical substitution?

What are the three stages of free radical substitution?

Initiation - breaking halogen bond to form free radicals Propagation - chain part of the reaction where prod s are formed but free radical remains Termination - free radicals removed, stable products formed

Write equations for the reaction of CH_4 with CI_2 to form CH_3CI

D PMTEducation

Write equations for the reaction of CH_4 with CI_2 to form CH_3CI

www.pmt.education

```
Initiation: Cl_2 \rightarrow 2Cl \cdot (in \text{ presence of UV light})
Propagation: CI \bullet + CH_{A} \rightarrow HCI + \bullet CH_{A}
\bullet \mathrm{CH}_3 + \mathrm{Cl}_2 \to \mathrm{CH}_3 \mathrm{Cl} + \mathrm{Cl} \bullet
Termination:
\bullet CH_3 + CI \bullet \rightarrow CH_3CI
2C| \bullet \rightarrow C|_2
\bullet CH_3 + \bullet CH_3 \rightarrow CH_3 CH_3
```

